If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-152x-2400=0
a = 1; b = -152; c = -2400;
Δ = b2-4ac
Δ = -1522-4·1·(-2400)
Δ = 32704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32704}=\sqrt{64*511}=\sqrt{64}*\sqrt{511}=8\sqrt{511}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-152)-8\sqrt{511}}{2*1}=\frac{152-8\sqrt{511}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-152)+8\sqrt{511}}{2*1}=\frac{152+8\sqrt{511}}{2} $
| 14.2w-2.@=97.3 | | -1v+1=-6v+16 | | 3(9×-y)=18 | | 78=112-n | | 15n+14=2(n-6) | | 2x+13=-2-3x | | 8x+2=-1+9x | | 15/5x+2=4/5x | | 18=a/12 | | 3.13*x=2.54 | | 2(x-9)/7=2 | | 14w-2.1=97.3 | | 6b^2=-97 | | 6/l=16 | | 10-(5-x)=5+x | | 64=h+3 | | 15t=150 | | 10=z+12 | | 5x-15+4x+45=180 | | (16+32)/2=3x+6 | | i+3=18 | | 2(n-6)=-5n-2 | | p-50=75 | | -3+y/3=3 | | 9*g=54 | | 17x-19=5x+5 | | 14+s=19 | | 7/3m=28 | | x^2+9x-150=0 | | 5(4m-10)=30 | | (22+24)/2=x+34 | | 3/6=y/8 |